folder

A clonal expression biomarker associates with lung cancer mortality

Authors

  • D. Biswas
  • N.J. Birkbak
  • R. Rosenthal
  • C.T. Hiley
  • E.L. Lim
  • K. Papp
  • S. Boeing
  • M. Krzystanek
  • D. Djureinovic
  • L. La Fleur
  • M. Greco
  • B. Döme
  • J. Fillinger
  • H. Brunnström
  • Y. Wu
  • D.A. Moore
  • M. Skrzypski
  • C. Abbosh
  • K. Litchfield
  • M. Al Bakir
  • T.B.K. Watkins
  • S. Veeriah
  • G.A. Wilson
  • M. Jamal-Hanjani
  • J. Moldvay
  • J. Botling
  • A.M. Chinnaiyan
  • P. Micke
  • A. Hackshaw
  • J. Bartek
  • I. Csabai
  • Z. Szallasi
  • J. Herrero
  • N. McGranahan
  • C. Swanton

Journal

  • Nature Medicine

Citation

  • Nat Med 25 (10): 1540-1548

Abstract

  • An aim of molecular biomarkers is to stratify patients with cancer into disease subtypes predictive of outcome, improving diagnostic precision beyond clinical descriptors such as tumor stage. Transcriptomic intratumor heterogeneity (RNAITH) has been shown to confound existing expression-based biomarkers across multiple cancer types. Here, we analyze multi-region whole-exome and RNA sequencing data for 156 tumor regions from 48 patients enrolled in the TRACERx study to explore and control for RNA-ITH in non-small cell lung cancer. We find that chromosomal instability is a major driver of RNA-ITH, and existing prognostic gene expression signatures are vulnerable to tumor sampling bias. To address this, we identify genes expressed homogeneously within individual tumors that encode expression modules of cancer cell proliferation and are often driven by DNA copy-number gains selected early in tumor evolution. Clonal transcriptomic biomarkers overcome tumor sampling bias, associate with survival independent of clinicopathological risk factors, and may provide a general strategy to refine biomarker design across cancer types.


DOI

doi:10.1038/s41591-019-0595-z