folder

Control of neutrophil influx during peritonitis by transcriptional cross-regulation of chemokine CXCL1 by IL-17 and IFN-γ

Authors

  • R.A. Catar
  • L. Chen
  • S.M. Cuff
  • A. Kift-Morgan
  • M. Eberl
  • R. Kettritz
  • J. Kamhieh-Milz
  • G. Moll
  • Q. Li
  • H. Zhao
  • E. Kawka
  • D. Zickler
  • G. Parekh
  • P. Davis
  • D.J. Fraser
  • D. Dragun
  • K.U. Eckardt
  • A. Jörres
  • J. Witowski

Journal

  • Journal of Pathology

Citation

  • J Pathol 251 (2): 175-186

Abstract

  • Neutrophil infiltration is a hallmark of peritoneal inflammation, but mechanisms regulating neutrophil recruitment in patients with peritoneal dialysis (PD)-related peritonitis are not fully defined. We examined 104 samples of PD effluent collected during acute peritonitis for correspondence between a broad range of soluble parameters and neutrophil counts. We observed an association between peritoneal IL-17 and neutrophil levels. This relationship was evident in effluent samples with low but not high IFN-γ levels, suggesting a differential effect of IFN-γ concentration on neutrophil infiltration. Surprisingly, there was no association of neutrophil numbers with the level of CXCL1, a key IL-17-induced neutrophil chemoattractant. We investigated therefore the production of CXCL1 by human peritoneal mesothelial cells (HPMCs) under in vitro conditions mimicking clinical peritonitis. Stimulation of HPMCs with IL-17 increased CXCL1 production through induction of transcription factor SP1 and activation of the SP1-binding region of the CXCL1 promoter. These effects were amplified by TNFα. In contrast, IFN-γ dose-dependently suppressed IL-17-induced SP1 activation and CXCL1 production through a transcriptional mechanism involving STAT1. The SP1-mediated induction of CXCL1 was also observed in HPMCs exposed to PD effluent collected during peritonitis and containing IL-17 and TNFα, but not IFN-γ. Supplementation of the effluent with IFN-γ led to a dose-dependent activation of STAT1 and a resultant inhibition of SP1-induced CXCL1 expression. Transmesothelial migration of neutrophils in vitro increased upon stimulation of HPMCs with IL-17 and was reduced by IFN-γ. In addition, HPMCs were capable of binding CXCL1 at their apical cell surface. These observations indicate that changes in relative peritoneal concentrations of IL-17 and IFN-γ can differently engage SP1-STAT1, impacting on mesothelial cell transcription of CXCL1, whose release and binding to HPMC surface may determine optimal neutrophil recruitment and retention during peritonitis.


DOI

doi:10.1002/path.5438