folder

Gene-environment interaction analysis in atopic eczema: evidence from large population datasets and modelling in vitro

Authors

  • M. Standl
  • A. Budu-Aggrey
  • L.J. Johnston
  • M.S. Elias
  • S.H. Arshad
  • P. Bager
  • V. Bataille
  • H. Blakeway
  • K. Bonnelykke
  • D. Boomsma
  • B.M. Brumpton
  • M.B. Pineda
  • A. Campbell
  • J.A. Curtin
  • A. Eliasen
  • J.P.S. Fadista
  • B. Feenstra
  • T. Gerner
  • C.M. Gomez
  • S. Grosche
  • K.B. Gutzkow
  • A.S. Halling
  • C. Hayward
  • J. Henderson
  • E. Herrera-Luis
  • J.W. Holloway
  • J. Hottenga
  • J. O'B Hourihane
  • C. Hu
  • K. Hveem
  • A. Irizar
  • B. Jacquemi
  • L. Jessen
  • S. Kress
  • R.J. Kurukulaaratchy
  • S. Lau
  • S. Llop
  • M. Løset
  • I. Marenholtz
  • D. Mason
  • D.L. McCartney
  • M. Melbye
  • E. Melén
  • C. Minica
  • C.S. Murray
  • T. Nijsten
  • L.M. Pardo
  • S. Pasmans
  • C.E. Pennell
  • M.R. Rinnov
  • G. Santorelli
  • T. Schikowski
  • D. Sheehan
  • A. Simpson
  • C. Söderhäll
  • L.F. Thomas
  • J.P. Thyssen
  • M. Torrent
  • T. van Beijsterveldt
  • A. Visconti
  • J.M. Vonk
  • C.A. Wang
  • C.J. Xu
  • A.H. Ziyab
  • A. Custovic
  • P.D. Meglio
  • L. Duijts
  • C. Flohr
  • A.D. Irvine
  • G.H. Koppelman
  • Y.A. Lee
  • N.J. Reynolds
  • C. Smith
  • S.M. Langan
  • L. Paternoster
  • S.J. Brown

Journal

  • medRxiv

Citation

  • medRxiv

Abstract

  • BACKGROUND: Environmental factors play a role in the pathogenesis of complex traits including atopic eczema (AE) and a greater understanding of gene-environment interactions (G*E) is needed to define pathomechanisms for disease prevention. We analysed data from 16 European studies to test for interaction between the 24 most significant AE-associated loci identified from genome-wide association studies and 18 early-life environmental factors. We tested for replication using a further 10 studies and in vitro modelling to independently assess findings. RESULTS:The discovery analysis showed suggestive evidence for interaction (p<0.05) between 7 environmental factors (antibiotic use, cat ownership, dog ownership, breastfeeding, elder sibling, smoking and washing practices) and at least one established variant for AE, 14 interactions in total (maxN=25,339). In replication analysis (maxN=252,040) dog exposure*rs10214237 (on chromosome 5p13.2 near IL7R) was nominally significant (OR(interaction)=0.91 [0.83-0.99] P=0.025), with a risk effect of the T allele observed only in those not exposed to dogs. A similar interaction with rs10214237 was observed for siblings in the discovery analysis (OR(interaction)=0.84[0.75-0.94] P=0.003), but replication analysis was under-powered OR(interaction)=1.09[0.82-1.46]). Rs10214237 homozygous risk genotype is associated with lower IL-7R expression in human keratinocytes, and dog exposure modelled in vitro showed a differential response according to rs10214237 genotype. CONCLUSIONS: Interaction analysis and functional assessment provide evidence that early-life dog exposure may modify the genetic effect of rs10214237 on AE via IL7R, supporting observational epidemiology showing a protective effect for dog ownership. The lack of evidence for other G*E studied here implies that only weak effects are likely to occur.


DOI

doi:10.1101/2025.01.24.25321071