RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release


  • K.S.Y. Liu
  • M. Siebert
  • S. Mertel
  • E. Knoche
  • S. Wegener
  • C. Wichmann
  • T. Matkovic
  • K. Muhammad
  • H. Depner
  • C. Mettke
  • J. Bueckers
  • S.W. Hell
  • M. Mueller
  • G.W. Davis
  • D. Schmitz
  • S.J. Sigrist


  • Science


  • Science 334 (6062): 1565-1659


  • The molecular machinery mediating the fusion of synaptic vesicles (SVs) at presynaptic active zone (AZ) membranes has been studied in detail, and several essential components have been identified. AZ-associated protein scaffolds are viewed as only modulatory for transmission. We discovered that Drosophila Rab3-interacting molecule (RIM)-binding protein (DRBP) is essential not only for the integrity of the AZ scaffold but also for exocytotic neurotransmitter release. Two-color stimulated emission depletion microscopy showed that DRBP surrounds the central Ca(2+) channel field. In drbp mutants, Ca(2+) channel clustering and Ca(2+) influx were impaired, and synaptic release probability was drastically reduced. Our data identify RBP family proteins as prime effectors of the AZ scaffold that are essential for the coupling of SVs, Ca(2+) channels, and the SV fusion machinery.