Targeted manipulation of brain serotonin: RNAi-mediated knockdown of tryptophan hydroxylase 2 in rats


  • S. Matthes
  • V. Mosienko
  • E. Popova
  • M. Rivalan
  • M. Bader
  • N. Alenina


  • ACS Chemical Neuroscience


  • ACS Chem Neurosci 10 (7): 3207-3217


  • Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in the biosynthesis of the biogenic monoamine serotonin (5-hydroxytryptamine, 5-HT). Two existing TPH isoforms are responsible for the generation of two distinct serotonergic systems in vertebrates. TPH1, predominantly expressed in gastrointestinal tract and pineal gland, mediates 5-HT biosynthesis in non-neuronal tissues, while TPH2, mainly found in the raphe nuclei of the hindbrain, is accountable for the production of 5-HT in the brain. Neuronal 5-HT is a key regulator of mood and behaviour and its deficiency has been implicated in a variety of neuropsychiatric disorders, e.g. depression and anxiety. To gain further insights into the complexity of central 5-HT modulations of physiological and pathophysiological processes, a new transgenic rat model, allowing an inducible gene knockdown of Tph2 was established based on doxycycline-inducible shRNA-expression. Biochemical phenotyping revealed a functional knockdown of Tph2 mRNA expression following oral doxycycline administration, with subsequent reductions in the corresponding levels of TPH2 enzyme expression and activity. Transgenic rats showed also significantly decreased tissue levels of 5-HT and its degradation product 5-Hydroxyindoleacetic acid (5-HIAA) in the raphe nuclei, hippocampus, hypothalamus, and cortex, while peripheral 5-HT concentrations in the blood remained unchanged. In summary, this novel transgenic rat model allows inducible manipulation of 5-HT biosynthesis specifically in the brain and may help to elucidate the role of 5-HT in the pathophysiology of affective disorders.