Using gradient boosting with stability selection on health insurance claims data to identify disease trajectories in chronic obstructive pulmonary disease


  • T. Ploner
  • S. Heß
  • M. Grum
  • P. Drewe-Boss
  • J. Walker


  • Statistical Methods in Medical Research


  • Stat Methods Med Res 29 (12): 3684-3694


  • OBJECTIVE: We propose a data-driven method to detect temporal patterns of disease progression in high-dimensional claims data based on gradient boosting with stability selection. MATERIALS AND METHODS: We identified patients with chronic obstructive pulmonary disease in a German health insurance claims database with 6.5 million individuals and divided them into a group of patients with the highest disease severity and a group of control patients with lower severity. We then used gradient boosting with stability selection to determine variables correlating with a chronic obstructive pulmonary disease diagnosis of highest severity and subsequently model the temporal progression of the disease using the selected variables. RESULTS: We identified a network of 20 diagnoses (e.g. respiratory failure), medications (e.g. anticholinergic drugs) and procedures associated with a subsequent chronic obstructive pulmonary disease diagnosis of highest severity. Furthermore, the network successfully captured temporal patterns, such as disease progressions from lower to higher severity grades. DISCUSSION: The temporal trajectories identified by our data-driven approach are compatible with existing knowledge about chronic obstructive pulmonary disease showing that the method can reliably select relevant variables in a high-dimensional context. CONCLUSION: We provide a generalizable approach for the automatic detection of disease trajectories in claims data. This could help to diagnose diseases early, identify unknown risk factors and optimize treatment plans.