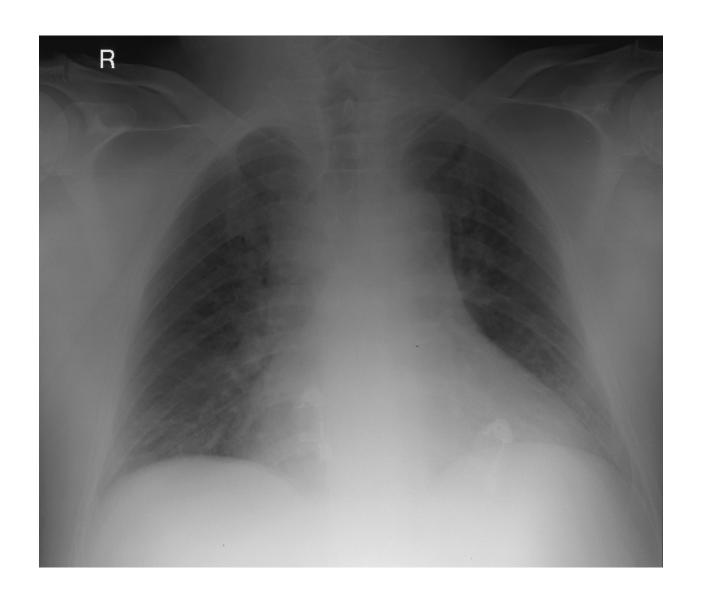
Not all turtles are slow


Chrysemys picta marginata; the diving turtle

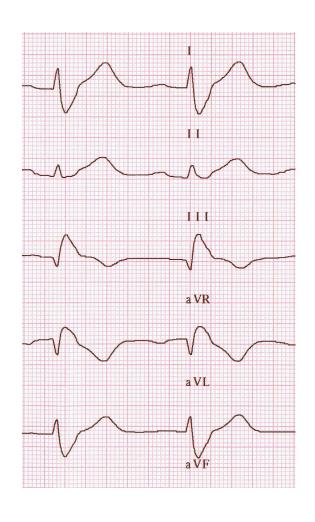
47-year-old, shortness of breath and leg swelling for 2 weeks

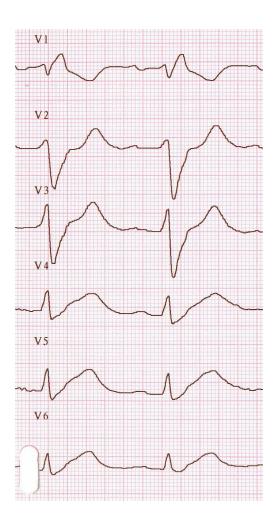
- Unemployed Berliner, garden colony (Laubenpieper)
- No meds, "denies" alcohol intake
- BP 115/60, HR 96/Min, RR 36/Min
- Rales bilateral
- Distant heart sounds, no murmurs, ?S3
- Bowel sounds diminished
- Edema to sacrum
- Suspect CHF

Portable films are next to worthless

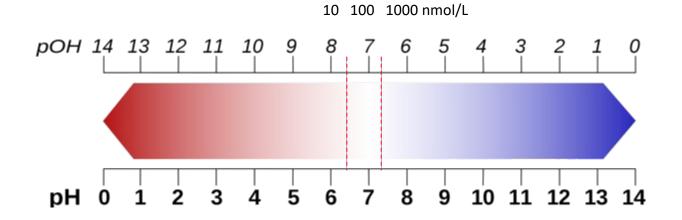
Acute labs

- Hb 13 g/dl, Hematocrit 38 vol%
- pH 7.30, PaCO₂ 20, PaO₂ 105 (mm Hg), HCO₃ 10,
- Na 123, K 6.9, Cl 87 (mmol/l)
- Glucose 5.6 mmol/l
- Lactate 14 mmol/l
- Anything life threatening here?

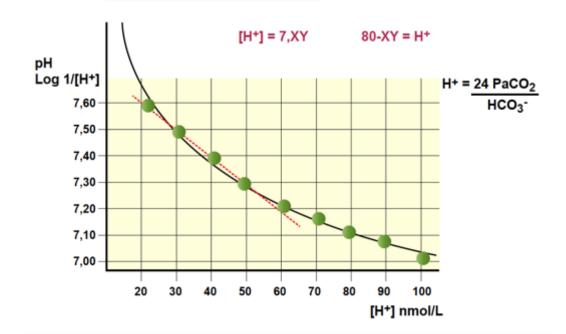

Anything lethal here?


- Acid-base problem?
- Hyperkalemia?
- Hyponatremia?
- Poor oxygen delivery?
- Heart failure?
- Just being in our ICU?

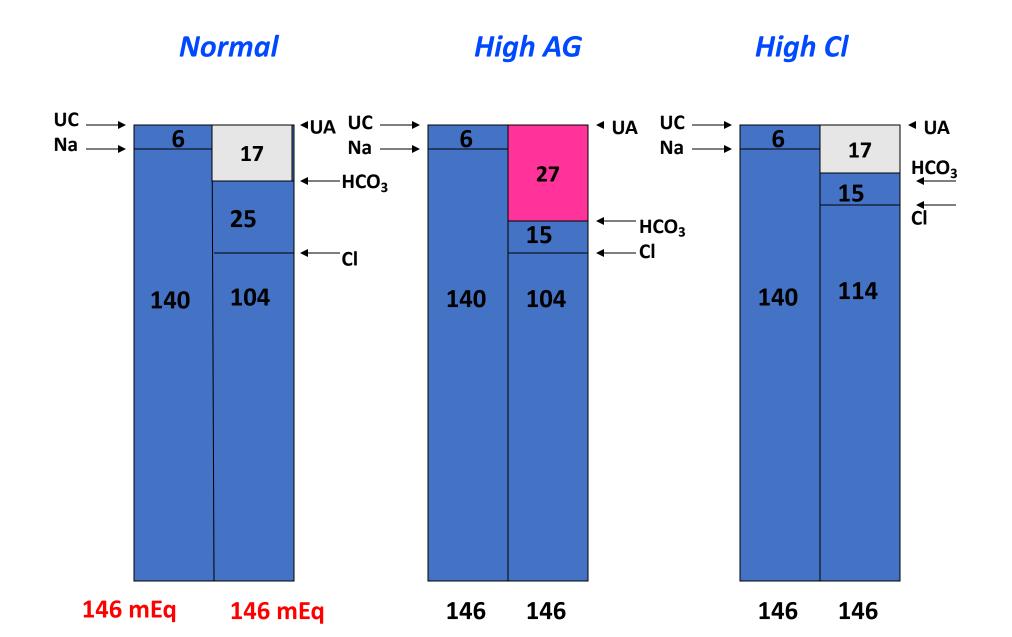
The answer is "jawohl"!


- Alveolar Gas Formula (Sea level)
- $PAO_2 = 150 (PaCO_2)/0.8 [RQ]$
- \bullet = 150 105 + 25 = 20 mm Hg
- A-a gradient modestly elevated (not a problem).
- What is the hydrogen ion concentration at pH 7.30?
- How many people die because of hydrogen ions?
- None!

How about Hyperkalemia?



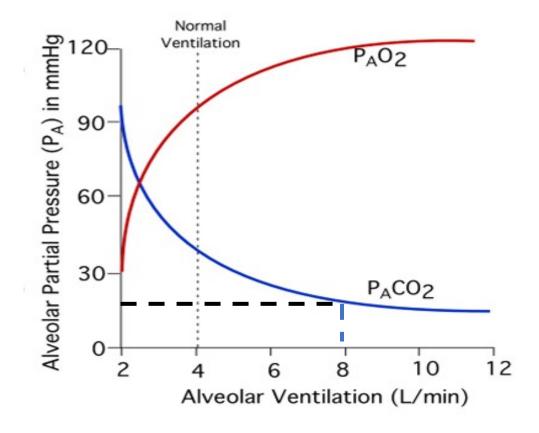
The pH was 7.30. What is the [H⁺] in nanomols per liter


"PUISSANCE" HYDROGEN Sorensen & Hasselbalch

Now the "nitty-gritty"!

- Is there an acid-base problem?
- Acidemia with a low HCO₃ and low PaCO₂
- Metabolic Acidosis
- HCO₃ fell by 15 mmol (25 to 10)
- Decrease in PaCO₂ was 20 mm Hg
- Metabolic Acidosis, slightly overcompensated ie. respiratory Alkalosis

Metabolic acidosis is caused by gain of $[H^+]$ or loss of $[HCO_3^-]$


Laubenpieper has an elevated AG

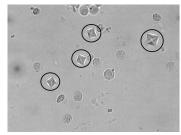
- AG = Na CI $HCO_3 = 26 (12\pm 2)$
- AG is 14 mmol/l too high
- Lactate is elevated by 14 mmol/l
- Ahah! For every mmol/l increase in lactate we observe one mmol/l increase in AG
- "Delta" for "Delta"
- So we have a pure anion-gap metabolic acidosis!

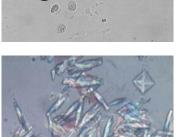
Is the respiratory compensation appropriate?

 $H = (24 \times PCO_2)/HCO_3$

 $PAO_2 = 150-PaO_2+PaCO_2/0.8$

Laubenpieper is shipped up to our ICU


- Leukocytes 16 000/μ³
- D Dimer 0.48 mg/dl, Trop T 0.05 μg/l
- aPTT 18 sec, ALAT, ASAT, Bilirubin slightly elevated
- Crea 243 µmol/l, Urea 18 mmol/l
- Osmo 287 mosm/l
- Ethanol not detectable


Can we dismiss methanol and ethylene glycol poisoning?

- Calculated Osmo = 2(Na+K) + Glu + Urea
- \bullet = 2(129) + 5.6 + 19 = 283
- Difference is only 4 mosm
- Most common cause of increased AG today?

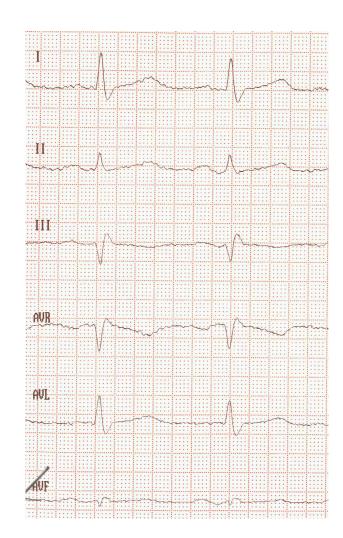
Mnemonics: Kussmaul or Goldmark?)

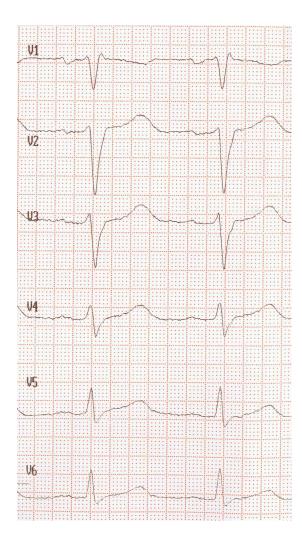
- Methanol; uremia; diabetic ketoacidosis (DKA); paraldehyde, phenformin; iron, isoniazid; lactic; ethylene glycol; salicylates (English)
- Kussmaul: Ketoazidose, Urämie, Salizyl-Säure, Metanol, Äthylenglykol, (mehr) Urämie, Laktat (German)
- Goldmark: Glycol, Oxoproline, L-Lactate, D-Lactate, Methanol, Aspirin, Renal Failure, Ketones

Can his urine tell us anything?

Sediment for ethylene glycol

 Ferric chloride for acetyl salicylic acid, ketonuria, urea

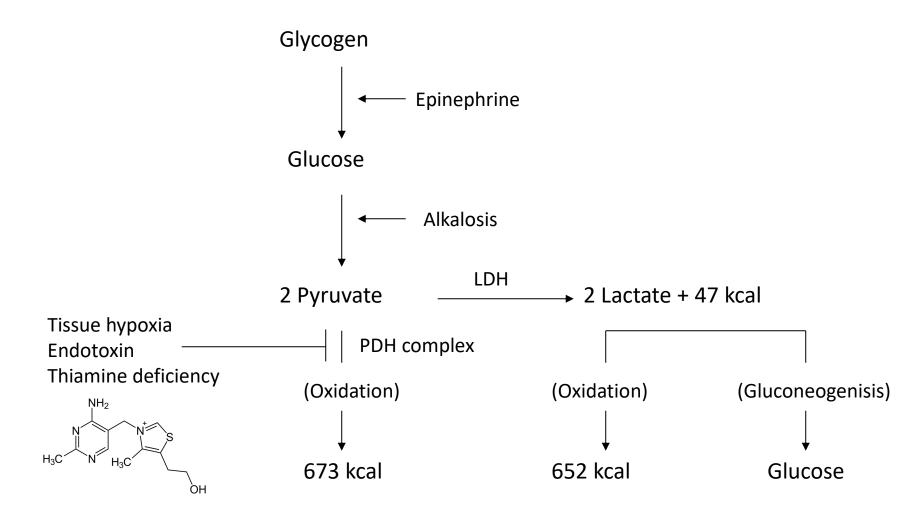

 Lactate is 100% absorbed and does not appear in urine

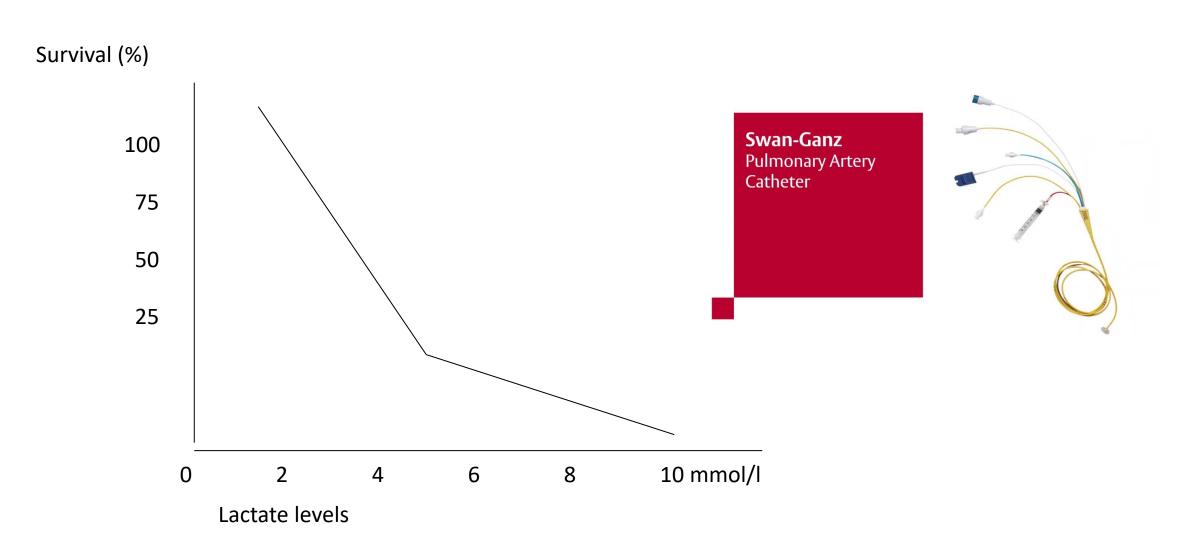

UK, UNa and UCreatinine

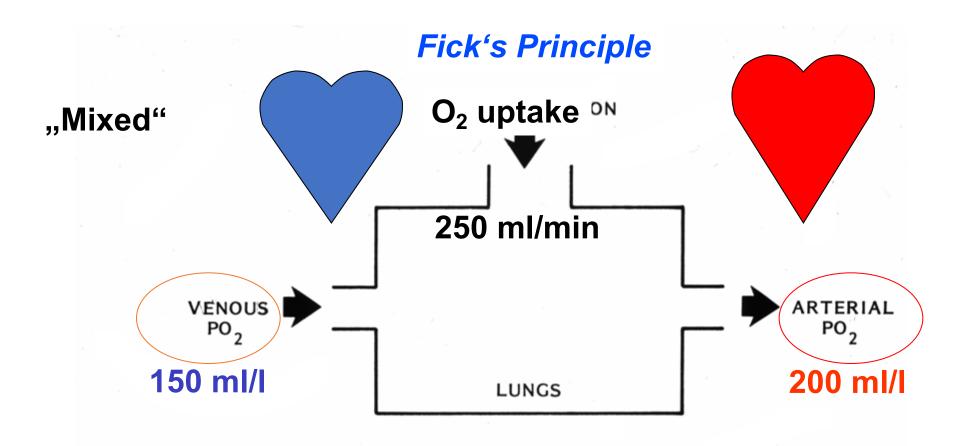
We check out his urine!

- UNa 10 mmol/l
- UCI 15 mmol/l
- UK 35 mmol/l
- Sp.Grav. 1.030 (What is Uosm??)
- Prot 2+
- WBCs und granulated cylinders
- Ketone not present
- Mnemonics lead us to lactate
- Prerenal acute renal failure?

Patient stayed oliguric despite a truck load of furosemide. Hemodialysis was done and fixed his ECG.




Glukose+2ATP+2H₂PO₄ -> 2Lactate+2ADP+2H₂O


- Lactate is the end product of anaerobic glycolysis
- Production is 1 mmol/kg/h, circa 2000 mmol/day for our 80 kg Laubenpieper
- Production in skeletal muscle, GI tract, brain and erythrocytes
- The liver uses it (for gluconeogenesis) or for fuel

Glycolysis

Tissue hypoxia - lactate associated with shock (Circulation 1975)

C is "content" i.e. Oxygen content

But Laubenpieper was not in Shock!

- CVP 25 mm Hg
- PCWP 20 mm Hg
- CO 9 I/min
- Peripheral resistance 336 dyne/cm⁻⁵
- What was DO₂, consumption VO₂ and O₂ extraction?
- No Swan-Ganz catheters, unless you can do this!

$$R=rac{\Delta p}{\dot{V}}$$

High output heart failure

- Hb(13 g/dl) x 1.34 = 17.4 ml O_2 /dl or 174 ml/l
- CO = 9 I/min
- $DO_2 = 174x9 = 1566 \text{ ml/min } (O_2 \text{ offered per min.})$
- $VO_2 = DO_2 \times (SaO_2 SvO_2)$
- $SaO_2 = 100\%$
- PvO_2 was 60 mmHg; SvO_2 = 90% (40 mm Hg; 75%)
- $VO_2 = 156.6 \text{ ml/min}$
- $O_2ER = 10\%$ (normal O_2ER is 25%)
- Why does the Laubenpieper not utilize O₂?

What leads to O₂ uncoupling?

- Poisoning cytochrome C oxidase
 - Cyanide, CO
- Dinitrophenol
 - Atractyloside (a plant glycoside)
 - Bongkrekic
- Metformin
- Disturbances of PDH
- Endotoxin
- Thiamine deficiency

Who first described Beriberi?

J.UGDUNI BATAVORUM apud GEORGIUM WISHOFF.

Nicholas Tulp aus Leyden, 1739 Rembrandt in the "Anatomy demonstration"

Christiaan Eijkmann, polished rice, Nobel Prize 1929

Laubenpieper received Thiamine

- Within 12 h Lactate fell to 1 mmol/l
- pH rose to 7.4
- HCO₃ increased to 24 mmol/l
- O₂ extraction was 20%
- Cardiac function improved within 1 week
- Liver and renal function normalized
- Signed out against medical advice

Plasma values (mmol/l) of Chrysemys picta marginata

Prior to hibernation

• Na 117

• Cl 73

• HCO₃ 39

• AG 5

Lactate4

• K 2

• Mg 2.6

• Ca 3.7

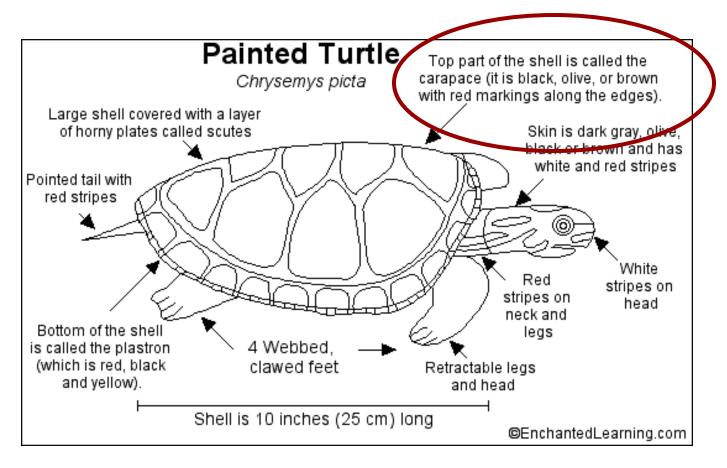
Stuck under water for 5 months

• Na⁺ 99

• Cl⁻ 44

• HCO_3^- 5 $\Delta 34$

• AG⁻ 50 ∆45


• Lactate⁻ 185 <u>∆</u>181

• K⁺ 10

• Mg²⁺ 12

• Ca²⁺ 59

A physiological lactic acidosis

HCO₃ decease is much lower than would be expected than the lactate increase. Because H⁺ Ions were buffered with CaCO₃ in the turtle's shell.

Teaching points

- Acid-base problems are not acutely lethal.
- Hyperkalemia (when treated) needs insulin (and glucose)
- Swan-Ganz allows metabolic assessments: DO₂ and VO₂.
- AG (like mosm/L) is a clinical tool, not a law of nature
- Lactic acidosis is today the most common cause of AG acidosis – there are two forms