folder

Electrodynamics and radiofrequency antenna concepts for human magnetic resonance at 23.5 T (1 GHz) and beyond

Authors

  • L. Winter
  • T. Niendorf

Journal

  • Magnetic Resonance Materials in Physics Biology and Medicine

Citation

  • Magn Reson Mat Phys Biol Med 29 (3): 641-656

Abstract

  • Objective: This work investigates electrodynamic constraints, explores RF antenna concepts and examines the transmission fields (B 1 + ) and RF power deposition of dipole antenna arrays for 1H magnetic resonance of the human brain at 1 GHz (23.5 T). Materials and methods: Electromagnetic field (EMF) simulations are performed in phantoms with average tissue simulants for dipole antennae using discrete frequencies [300 MHz (7.0 T) to 3 GHz (70.0 T)]. To advance to a human setup EMF simulations are conducted in anatomical human voxel models of the human head using a 20-element dipole array operating at 1 GHz. Results: Our results demonstrate that transmission fields suitable for 1H MR of the human brain can be achieved at 1 GHz. An increase in transmit channel density around the human head helps to enhance B 1 + in the center of the brain. The calculated relative increase in specific absorption rate at 23.5 versus 7.0 T was below 1.4 (in-phase phase setting) and 2.7 (circular polarized phase setting) for the dipole antennae array. Conclusion: The benefits of multi-channel dipole antennae at higher frequencies render MR at 23.5 T feasible from an electrodynamic standpoint. This very preliminary finding opens the door on further explorations that might be catalyzed into a 20-T class human MR system.


DOI

doi:10.1007/s10334-016-0559-y