In vivo splenic CD11c cells downregulate CD4 T-cell response thereby decreasing systemic immunity to gene-modified tumour cell vaccine


  • S. Cayeux
  • B. Bukarica
  • C. Buschow
  • J. Charo
  • M. Bunse
  • B. Doerken
  • T. Blankenstein


  • Gene Therapy


  • Gene Ther 14 (20): 1481-1491


  • One of the factors influencing the efficacy of tumour cell vaccines is the site of immunization. We have shown previously that gene-modified vaccines delivered directly inside the spleen induced antigen cross-presentation by splenic antigen-presenting cells (not B cells). Here, we examined the interaction between splenic CD11c(+) cells and antigen-specific CD4(+) T cells. We used tumour cells expressing ovalbumin (OVA), a situation where CD4(+) T-cell help is required for the generation of a cytotoxic T lymphocyte response. Using in vivo bioluminescence imaging of luciferase-expressing EL4-OVA cells, we could demonstrate that tumour cells were located exclusively inside the spleen following intrasplenic injection. We showed that after intrasplenic immunization with T/SA-OVA cells, splenic class I(+) class II(+) CD11c(+) cells engulfed and presented in vivo the OVA class I-restricted peptide SIINFEKL. However, in vivo previously adoptively transferred 5,6-carboxy-succinimidyl-fluorescein-ester-labelled transgenic CD4(+)KJI-26(+) cells specific for the class II OVA(323-339) peptide underwent abortive proliferation in the spleen. These CD4(+)KJI-26(+) cells were only transiently activated and produced IL-10 and IL-4 and not IFN-gamma. It appears that splenic CD11c(+) cells can downregulate splenic specific CD4(+) T-cell response thereby leading to a decrease in antitumour systemic immunity.