folder

Compound-SNE: comparative alignment of t-SNEs for multiple single-cell omics data visualization

Authors

  • C.G. Cess
  • L. Haghverdi

Journal

  • Bioinformatics

Citation

  • Bioinformatics btae471

Abstract

  • One of the first steps in single-cell omics data analysis is visualization, which allows researchers to see how well-separated cell-types are from each other. When visualizing multiple datasets at once, data integration/batch correction methods are used to merge the datasets. While needed for downstream analyses, these methods modify features space (e.g. gene expression)/PCA space in order to mix cell-types between batches as well as possible. This obscures sample-specific features and breaks down local embedding structures that can be seen when a sample is embedded alone. Therefore, in order to improve in visual comparisons between large numbers of samples (e.g. multiple patients, omic modalities, different time points), we introduce Compound-SNE, which performs what we term a soft alignment of samples in embedding space. We show that Compound-SNE is able to align cell-types in embedding space across samples, while preserving local embedding structures from when samples are embedded independently.


DOI

doi:10.1093/bioinformatics/btae471