Control of endothelial quiescence by FOXO-regulated metabolites
Authors
- J. Andrade
- C. Shi
- A.S.H. Costa
- J. Choi
- J. Kim
- A. Doddaballapur
- T. Sugino
- Y.T. Ong
- M. Castro
- B. Zimmermann
- M. Kaulich
- S. Guenther
- K. Wilhelm
- Y. Kubota
- T. Braun
- G.Y. Koh
- A.R. Grosso
- C. Frezza
- M. Potente
Journal
- Nature Cell Biology
Citation
- Nat Cell Biol 23: 413-423
Abstract
Endothelial cells (ECs) adapt their metabolism to enable the growth of new blood vessels, but little is known how ECs regulate metabolism to adopt a quiescent state. Here, we show that the metabolite S-2-hydroxyglutarate (S-2HG) plays a crucial role in the regulation of endothelial quiescence. We find that S-2HG is produced in ECs after activation of the transcription factor forkhead box O1 (FOXO1), where it limits cell cycle progression, metabolic activity and vascular expansion. FOXO1 stimulates S-2HG production by inhibiting the mitochondrial enzyme 2-oxoglutarate dehydrogenase. This inhibition relies on branched-chain amino acid catabolites such as 3-methyl-2-oxovalerate, which increase in ECs with activated FOXO1. Treatment of ECs with 3-methyl-2-oxovalerate elicits S-2HG production and suppresses proliferation, causing vascular rarefaction in mice. Our findings identify a metabolic programme that promotes the acquisition of a quiescent endothelial state and highlight the role of metabolites as signalling molecules in the endothelium.