folder

Differential protein occupancy profiling of the mRNA transcriptome

Authors

  • M. Schueler
  • M. Munschauer
  • L.H. Gregersen
  • A. Finzel
  • A. Loewer
  • W. Chen
  • M. Landthaler
  • C. Dieterich

Journal

  • Genome Biology

Citation

  • Genome Biol 15 (1): R15

Abstract

  • BACKGROUND: RNA-binding proteins (RBPs) mediate mRNA biogenesis, translation and decay. We recently developed an approach to profile transcriptome-wide RBP contacts on polyadenylated transcripts by next-generation sequencing. A comparison of such profiles from different biological conditions has the power to unravel dynamic changes in protein-contacted cis-regulatory mRNAs regions without a priori knowledge of the regulatory protein component. RESULTS: We compared protein occupancy profiles of polyadenylated transcripts in MCF7 and HEK293 cells. Briefly, we developed a bioinformatics workflow to identify differential crosslinking sites in cDNA reads of 4-thiouridine crosslinked polyadenylated RNA samples. We identified 30,000 differential crosslinking sites between MCF7 and HEK293 cells at an estimated false-discovery rate of 10%. 73% of all reported differential protein-RNA contact sites cannot be explained by local changes in exon usage as indicated by complementary RNA-seq data. The majority of differentially crosslinked positions are located in 3[prime] UTRs, show distinct secondary-structure characteristics and overlap with binding sites of known RBPs, such as ELAVL1. Importantly, mRNA transcripts with the most significant occupancy changes show elongated mRNA half-lives in MCF7 cells. CONCLUSIONS: We present a global comparison of protein occupancy profiles from different cell types, and provide evidence for altered mRNA metabolism as a result of differential protein-RNA contacts. Additionally, we introduce POPPI, a bioinformatics workflow for the analysis of protein occupancy profiling experiments. Our work demonstrates the value of protein occupancy profiling for assessing cis-regulatory RNA sequence space and its dynamics in growth, development and disease.


DOI

doi:10.1186/gb-2014-15-1-r15