folder

Fluorine ((19)F) MRI for assessing inflammatory cells in the kidney: experimental protocol

Authors

  • M.C. Ku
  • A. Schreiber
  • P.R. Delgado
  • P. Boehm-Sturm
  • R. Kettritz
  • T. Niendorf
  • A. Pohlmann
  • S. Waiczies

Journal

  • Methods in Molecular Biology

Citation

  • Methods Mol Biol 2216: 495-507

Abstract

  • Inflammation is one underlying contributing factor in the pathology of acute and chronic kidney disorders. Phagocytes such as monocytes, neutrophils and dendritic cells are considered to play a deleterious role in the progression of kidney disease but may also contribute to organ homeostasis. The kidney is a target of life-threatening autoimmune disorders such as the antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV). Neutrophils and monocytes express ANCA antigens and play an important role in the pathogenesis of AAV. Noninvasive in vivo methods that can quantify the distribution of inflammatory cells in the kidney as well as other organs in vivo would be vital to identify the causality and significance of inflammation during disease progression. Here we describe an noninvasive technique to study renal inflammation in rodents in vivo using fluorine ((19)F) MRI. In this protocol we chose a murine ANCA-AAV model of renal inflammation and made use of nanoparticles prepared from perfluoro-5-crown-15-ether (PFCE) for renal (19)F MRI.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter is complemented by two separate chapters describing the basic concept and data analysis.


DOI

doi:10.1007/978-1-0716-0978-1_30