Towards a five-minute comprehensive cardiac MR examination using highly accelerated parallel imaging with a 32-element coil array: Feasibility and initial comparative evaluation


  • J. Xu
  • D. Kim
  • R. Otazo
  • M.B. Srichai
  • R.P. Lim
  • L. Axel
  • K.A. McGorty
  • T. Niendorf
  • D.K. Sodickson


  • Journal of Magnetic Resonance Imaging


  • J Magn Reson Imaging 38 (1): 180-188


  • PURPOSE: To evaluate the feasibility and perform initial comparative evaluations of a 5-minute comprehensive whole-heart magnetic resonance imaging (MRI) protocol with four image acquisition types: perfusion (PERF), function (CINE), coronary artery imaging (CAI), and late gadolinium enhancement (LGE). MATERIALS AND METHODS: This study protocol was Health Insurance Portability and Accountability Act (HIPAA)-compliant and Institutional Review Board-approved. A 5-minute comprehensive whole-heart MRI examination protocol (Accelerated) using 6-8-fold-accelerated volumetric parallel imaging was incorporated into and compared with a standard 2D clinical routine protocol (Standard). Following informed consent, 20 patients were imaged with both protocols. Datasets were reviewed for image quality using a 5-point Likert scale (0 = non-diagnostic, 4 = excellent) in blinded fashion by two readers. RESULTS: Good image quality with full whole-heart coverage was achieved using the accelerated protocol, particularly for CAI, although significant degradations in quality, as compared with traditional lengthy examinations, were observed for the other image types. Mean total scan time was significantly lower for the Accelerated as compared to Standard protocols (28.99 +/- 4.59 min vs. 1.82 +/- 0.05 min, P < 0.05). Overall image quality for the Standard vs. Accelerated protocol was 3.67 +/- 0.29 vs. 1.5 +/- 0.51 (P < 0.005) for PERF, 3.48 +/- 0.64 vs. 2.6 +/- 0.68 (P < 0.005) for CINE, 2.35 +/- 1.01 vs. 2.48 +/- 0.68 (P = 0.75) for CAI, and 3.67 +/- 0.42 vs. 2.67 +/- 0.84 (P < 0.005) for LGE. Diagnostic image quality for Standard vs. Accelerated protocols was 20/20 (100%) vs. 10/20 (50%) for PERF, 20/20 (100%) vs. 18/20 (90%) for CINE, 18/20 (90%) vs. 18/20 (90%) for CAI, and 20/20 (100%) vs. 18/20 (90%) for LGE. CONCLUSION: This study demonstrates the technical feasibility and promising image quality of 5-minute comprehensive whole-heart cardiac examinations, with simplified scan prescription and high spatial and temporal resolution enabled by highly parallel imaging technology. The study also highlights technical hurdles that remain to be addressed. Although image quality remained diagnostic for most scan types, the reduced image quality of PERF, CINE, and LGE scans in the Accelerated protocol remain a concern.