Breaking the norm: population-scale normative modeling of brain structure in depression and anxiety
Authors
- Julius Wiegert
- Sebastián Marty-Lombardi
- Jailan Oweda
- Esra Lenz
- Peter Ahnert
- Klaus Berger
- Hermann Brenner
- Josef Frank
- Hans Grabe
- Karin Halina Greiser
- Johanna Klinger-König
- André Karch
- Michael Leitzmann
- Claudia Meinke-Franze
- Rafael Mikolajczyk
- Frauke Nees
- Thoralf Niendorf
- Oliver Sander
- Carsten Oliver Schmidt
- Steffi G. Riedel-Heller
- Kerstin Ritter
- Annette Peters
- Tobias Pischon
- Stephanie Witt
- Johannes Nitsche
- Joonas Naamanka
- Sebastian Volkmer
- Antonia Mai
- Amrou Abas
- Xiuzhi Li
- Andreas Meyer-Lindenberg
- Tobias Gradinger
- Fabian Streit
- Urs Braun
- Emanuel Schwarz
Journal
- medRxiv
Citation
- medRxiv
Abstract
We applied deep normative modeling to structural MRI data from two large cohorts (German National Cohort, N ≈ 29,000 and UK Biobank, N ≈ 25,000) to characterize individuallevel brain deviations along symptom dimensions of depression, anxiety, and alcohol use. Each brain was embedded into a 256-dimensional latent space, allowing us to quantify both the magnitude and direction of deviation from a normative reference trained on the non/lowsymptomatic subpopulation. Deviation magnitude increased with symptom severity, and directional patterns separated mood-anxiety and alcohol-use tendencies. These deviation axes generalized across cohorts and supported individual-level classification of symptomatic group membership, especially at higher symptom levels. Combining deviations with polygenic risk scores improved classification performance, particularly for depressive and anxiety measures, indicating complementary contributions of imaging and genetics. Our findings demonstrate that structural brain deviations reflect meaningful, continuous variation in affective and behavioral symptoms.