RNA biology and posttranscriptional regulation


Prof. Dr. Markus Landthaler

87: Timoféeff-Ressovsky-House (Genomcentrum)

Room 1.15

Tel. 3026

Fax. 3068


Our main interest is the understanding of post-transcriptional regulatory networks that control gene expression. Post-transcriptional regulation is highly versatile and adaptable in exploiting cellular time and space. microRNAs and RNA-binding proteins play a key role in the regulation of spatial and temporal changes in protein synthesis through control of mRNA transport, storage and translation. Deregulation and failed coordination of these mechanisms contribute to pathophysiologicial development and conditions. A prerequisite for a systems level understanding of post-transcriptional regulation is a transcriptome-wide high-resolution map of the RNA-protein contacts that allows us to study how these interactions control the fate of cytoplasmic mRNAs.

We are using a novel crosslinking-immunoprecipitation approach (PAR-CLIP) in combination with “deep-sequencing” to identify functional RNA-protein interactions at a nucleotide resolution (Hafner & Landthaler et al. [2010] Cell, 141). By using these RNA-protein interaction maps and combining them with cell-based and biochemical assays, we are aiming to understand the coordinated and combinatorial assembly of microRNAs, RNA-binding proteins and helicases on their target mRNAs as well as the structures and mechanisms guiding mRNA maturation, localization, turnover and protein synthesis in response to stress and environmental signals.


homepage Landthaler lab