Deficiency in KPNA4, but not in KPNA3, causes attention deficit/hyperactivity disorder like symptoms in mice

Autor/innen

  • F. Rother
  • A.R. Parmar
  • J.S. Bodenhagen
  • L. Marvaldi
  • E. Hartmann
  • M. Bader

Journal

  • Genes

Quellenangabe

  • Genes 16 (6): 690

Zusammenfassung

  • Nucleocytoplasmic transport is crucial for neuronal cell physiology and defects are involved in neurodegenerative diseases like amyotrophic lateral sclerosis and Alzheimer’s disease, but also in ageing. Recent studies have suggested, that the classic nuclear import factor adapters KPNA3 (also named importin alpha4) and KPNA4 (also named importin alpha3) could be associated with the development of motor neuron diseases, a condition specifically affecting the neurons projecting from brain to spinal cord or from spinal cord to the muscles. Here we set out to analyze the neuronal function of mice deficient in KPNA3 (Kpna3-KO) or KPNA4 (Kpna4-KO). The motoric abilities and locomotion at different time points in ageing were tested to study the role of these two genes on motor neuron function. While we did not find deficits related to motor neurons in both mouse models, we discovered a hypermotoric phenotype in KPNA4-deficient mice. Attention deficit/hyperactivity disorder (ADHD) is caused by a combination of genetic, environmental and neurobiological factors and a number of genes have been suggested in genome-wide association studies to contribute to ADHD, including KPNA4. Here we provide supportive evidence for KPNA4 as a candidate pathogenic factor in ADHD, by analysing Kpna4-KO mice which show ADHD-like symptoms.


DOI

doi:10.3390/genes16060690