Rapid single-cell identification of Epstein-Barr virus-specific T-cell receptors for cellular therapy
Autor/innen
- M.F. Lammoglia Cobo
- C. Welters
- L. Rosenberger
- M. Leisegang
- K. Dietze
- C. Pircher
- L. Penter
- R. Gary
- L. Bullinger
- A. Takvorian
- A. Moosmann
- K. Dornmair
- T. Blankenstein
- T. Kammertöns
- A. Gerbitz
- L. Hansmann
Journal
- Cytotherapy
Quellenangabe
- Cytotherapy 24 (8): 818-826
Zusammenfassung
BACKGROUND AND AIMS: Epstein-Barr virus (EBV) is associated with solid and hematopoietic malignancies. After allogeneic stem cell transplantation, EBV infection or reactivation represents a potentially life-threatening condition with no specific treatment available in clinical routine. In vitro expansion of naturally occurring EBV-specific T cells for adoptive transfer is time-consuming and influenced by the donor's T-cell receptor (TCR) repertoire and requires a specific memory compartment that is non-existent in seronegative individuals. The authors present highly efficient identification of EBV-specific TCRs that can be expressed on human T cells and recognize EBV-infected cells. METHODS AND RESULTS: Mononuclear cells from six stem cell grafts were expanded in vitro with three HLA-B*35:01- or four HLA-A*02:01-presented peptides derived from six EBV proteins expressed during latent and lytic infection. Epitope-specific T cells expanded on average 42-fold and were single-cell-sorted and TCRαβ-sequenced. To confirm specificity, 11 HLA-B*35:01- and six HLA-A*02:01-restricted dominant TCRs were expressed on reporter cell lines, and 16 of 17 TCRs recognized their presumed target peptides. To confirm recognition of virus-infected cells and assess their value for adoptive therapy, three selected HLA-B*35:01- and four HLA-A*02:01-restricted TCRs were expressed on human peripheral blood lymphocytes. All TCR-transduced cells recognized EBV-infected lymphoblastoid cell lines. CONCLUSIONS: The authors' approach provides sets of EBV epitope-specific TCRs in two different HLA contexts. Resulting cellular products do not require EBV-seropositive donors, can be adjusted to cell subsets of choice with exactly defined proportions of target-specific T cells, can be tracked in vivo and will help to overcome unmet clinical needs in the treatment and prophylaxis of EBV reactivation and associated malignancies.