Tumorgewebe unter dem Einfluss von TNF

Immuntherapie gegen Krebs: Botenstoff lässt Adern schrumpfen

Die Immuntherapie mit T-Zellen weckt bei an Krebs Erkrankten große Hoffnungen. Beim Blutkrebs gibt es erste Erfolge, doch solide Tumoren stellen Forschende vor große Probleme. Eine wichtige Rolle bei der Therapie hat der Botenstoff Interferon-Gamma, den die T-Zellen abgeben. Er schneidet dem Krebs die Blutversorgung ab, wie eine Studie im Fachjournal Nature zeigt.

Gemeinsame Pressemitteilung der Charité – Universitätsmedizin Berlin, des Max-Delbrück-Centrum für Molekulare Medizin und des Berlin Institute of Health

Das Immunsystem ist die mächtigste Waffe des Körpers gegen Krankheiten. Wie wäre es, wenn man sie gegen den Krebs einsetzen könnte? Forscherinnen und Forscher versuchen das seit langem und nutzen dafür etwa T-Zellen, einen speziellen Typ von Immunzellen. Wie ein mobiles Einsatzkommando patrouillieren sie nach einem Training durch den Körper, erkennen Krebszellen und töten sie ab. In ersten klinischen Versuchen ist diese Strategie bereits relativ erfolgreich – jedoch meist nur gegen Krebserkrankungen ohne Geschwulste, etwa Blutkrebs.

Bei Blutkrebs erfolgreich, bei soliden Tumoren weniger

Große, solide Tumoren stellen T-Zellen dagegen mitunter vor große Probleme. Anders als im Blut schwimmende Krebszellen können sie kompakte Geschwulste schlecht angreifen. Der Tumor schwächt die Angreifer mit hemmenden Signalen.

Die Wissenschaftler um Dr. Thomas Kammertöns, Prof. Thomas Blankenstein, Prof. Hans Schreiber und Christian Friese suchen nun zusammen mit ihrem Forschungsteam an der Charité – Universitätsmedizin Berlin, dem Max-Delbrück-Centrum für Molekulare Medizin (MDC), dem Berlin Institute of Health (BIH) und der Einstein-Stiftung nach Auswegen.

Sie untersuchten in einer Studie im Fachjournal Nature, wie die Botenstoffe von T-Zellen die direkte Umgebung des Tumors beeinflussen. Dazu zählen etwa das Bindegewebe oder die Adern, die den Tumor versorgen.

T-Zellen geben neben dem Tumor-Nekrose-Faktor das Molekül Interferon-Gamma (IFN-γ) ab, über dessen genaue Wirkungsweise bisher wenig bekannt war. „Wir wussten, dass IFN-γ maßgeblich über die Tumormikroumgebung gegen den Krebs wirkt,“ sagt Kammertöns. „Wir wollten nun herausfinden, welche Zellen genau das Ziel der Botenmoleküle sind.“

Blutgefäße ziehen sich zurück

Die Forscherinnen und Forscher züchteten genetisch veränderte Mäuse, die die Krebserkrankung nachbildeten. Darunter waren Tiere, bei denen nur die Zellen der Blutgefäße für das Botenmolekül empfänglich waren.

In diesen Mäusen drängte das IFN-γ die Adern aus den Tumoren zurück. Die Versorgung mit Sauerstoff und Nahrung brach zusammen und die Geschwulste starben ab. Diesen Prozess konnte das Forschungsteam mikroskopisch an lebenden Mäusen detailliert beobachten. Doch nur die Zellen der Blutgefäße reagierten auf den Botenstoff. Als die Forscher den Wirkstoff gezielt auf andere Zelltypen richteten, wuchsen die Tumoren unverändert weiter.

Diese Befunde erklären die bereits bekannte Kraft des Moleküls. „IFN-γ ist eine der wichtigsten Waffen, die den T-Zellen zur Verfügung stehen“, sagt Thomas Kammertöns.

Studienleiter Thomas Blankenstein sagt: „Zusammen mit dem Tumor-Nekrose-Faktor bildet IFN-γ ein starkes Team. TNF bringt die Tumorgefäße zum Platzen und öffnet dadurch das Gewebe. IFN-γ schneidet die Blutversorgung ab und hält den Tumor längerfristig in Schach.“

Die Therapie optimieren

Die Forscher gewannen so Anhaltspunkte für eine verbesserte T-Zell-Therapie gegen solide Krebstumoren. Thomas Blankenstein kommentiert: „Wir wollen genau verstehen, wie T-Zellen Tumoren angreifen. Die Zerstörung der Infrastruktur eines Tumors ist vermutlich wirkungsvoller als das Abtöten jeder einzelnen Krebszelle.“

„Unsere Erkenntnisse haben eine Bedeutung über die Tumortherapie hinaus“, sagt Thomas Kammertöns. „Interessanterweise ähnelt der Mechanismus, wie IFN-γ solide Tumoren eliminiert, der physiologischen Rückbildung von Gefäßen während der Entwicklung. Er stört die schnelle Wundheilung. Möglicherweise beeinflusst IFN-γ auch die Bildung von neuen Adern nach Schlaganfällen oder Herzinfarkten. Daher würden wir gern herausfinden, welche molekularen Abläufe dahinterstecken.“

Text: Martin Ballaschk

 

Weiterführende Informationen


Thomas Kammertoens1,2, Christian Friese1,2, Ainhoa Arina3, Christian Idel4, Dana Briesemeister1,2, Michael Rothe1,2, Andranik Ivanov5,6, Anna Szymborska2, Giannino Patone2, Severine Kunz2, Daniel Sommermeyer2, Boris Engels2,
 Matthias Leisegang1,2,5, Ana Textor1,2, Hans Joerg Fehling7, Marcus Fruttiger8, Michael Lohoff9, Andreas Herrmann10, Hua Yu10, Ralph Weichselbaum3, Wolfgang Uckert2,5, Norbert Hübner2,6,11, Holger Gerhardt2,5,11, Dieter Beule2,5, Hans Schreiber1,4,5, Thomas Blankenstein1,2,5 (2017): „Tumour ischaemia by interferon-γ resembles physiological blood vessel regression.“ Nature 545, p. 98–102. doi:10.1038/nature22311

1Institute of Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany. 2Max Delbrück Center for Molecular Medicine, Berlin, Germany. 3Department of Radiation and Cellular Oncology, Ludwig Center for Metastasis Research, The University of Chicago, Chicago, USA. 4Department of Pathology, The University of Chicago, Chicago, USA. 5Berlin Institute of Health, Berlin, Germany. 6Charité – Universitätsmedizin Berlin, Berlin, Germany. 7Institute of Immunology, University Clinics Ulm, Ulm, Germany. 8Institute of Ophthalmology, University College London, London, UK. 9Institute for Medical Microbiology, University of Marburg, Marburg, Germany. 10Beckman Research Institute at the Comprehensive Cancer Center City of Hope, Los Angeles, USA. 11DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany.

Einzelbilder