Salz Mitochondrium

Zu viel Salz bremst Fresszellen aus

Erhöhte Natriumkonzentrationen im Blut dämpfen die Energieproduktion in den Mitochondrien, den Kraftwerken der Zelle. Das hat Folgen für Immunzellen. Den Mechanismus dahinter hat ein internationales Team aufgeklärt und im Fachjournal „Circulation“ publiziert.

Das Essen nachzusalzen ist für viele Menschen ganz normal. Im Grunde denkt man gar nicht darüber nach. Sollte man aber! Denn zu viel Kochsalz kann nicht nur den Blutdruck in die Höhe treiben, sondern auch den Energiehaushalt von Immunzellen empfindlich stören und damit ihre Funktionsfähigkeit beeinträchtigen.

Bereits 2015 hatte die Arbeitsgruppe von Professor Dominik Müller vom Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) und vom Experimental and Clinical Research Center (ECRC) herausgefunden, dass erhöhte Natriumkonzentrationen im Blut sich sowohl auf die Aktivierung als auch die Funktion patrouillierender Monozyten, der Vorläuferzellen der Makrophagen, auswirkt. „Wir wussten aber nicht, was dabei genau in der Zelle passiert“, sagt Dr. Sabrina Geisberger vom Berlin Institute for Medical Systems Biology (BIMSB) des MDC. Sie ist Erstautorin der Studie eines internationalen Teams, das MDC-Wissenschaftler*innen zusammen mit Forscher*innen der Universität Regensburg und des Flämischen Instituts für Biotechnologie (VIB) / Hasselt University in Belgien angeführt haben. Das Deutsche Zentrum für Herz-Kreislaufforschung (DZHK) hat die Arbeit gefördert, die jetzt im Fachjournal „Circulation“ erschienen ist.

Erhöhte Natriumkonzentrationen im Blut führen dazu, dass die Mitochondrien – die Kraftwerke der Zellen – vorübergehend weniger ATP produzieren.

Salz unterbricht die Atmungskette in den Zellen

Kochsalz inhibiert sehr spezifisch den Komplex II der Atmungskette.
Sabrina Geisberger
Sabrina Geisberger Erstautorin der Studie

Gemeinsam mit dem Biochemiker und Metabolomics-Experten Dr. Stefan Kempa vom BIMSB sahen sich die Forschenden zunächst im Labor den Stoffwechsel von Immunzellen an, die zuvor erhöhten Salzkonzentrationen ausgesetzt waren. Schon nach drei Stunden zeigten sich Veränderungen. „Die Atmungskette wird unterbrochen: Die Zellen produzieren weniger ATP und verbrauchen weniger Sauerstoff“, erklärt Sabrina Geisberger. ATP (Adenosin-Triphosphat) ist der universelle Kraftstoff aller Zellen. Er liefert Energie für die „chemische Arbeit“ – die Synthese von Proteinen und anderen Molekülen – für Muskelkraft und die Regulation des Stoffwechsels. Gewonnen wird ATP in den Mitochondrien, den „Kraftwerken“ der Zelle, mit Hilfe einer komplexen Folge von biochemischen Reaktionen – der Atmungskette. „Kochsalz inhibiert sehr spezifisch den Komplex II der Atmungskette.“

Das hat Folgen: Wegen des Energiemangels reifen die Monozyten anders aus. „Die Fresszellen, deren Aufgabe es ist, Krankheitserreger im Körper aufzuspüren und zu beseitigen, konnten einerseits Pathogene besser bekämpfen. Andererseits könnten Entzündungsprozesse dadurch eher gefördert werden, was unter Umständen das kardiovaskuläre Risiko erhöht“, erklärt Dominik Müller.

Reversible Salzeffekte

Professor Markus Kleinewietfeld von der Universität Hasselt und VIB und Professor Jonathan Jantsch von der Universität Regensburg waren maßgeblich an den Untersuchungen von humanen Monozyten und Makrophagen beteiligt. Sie konnten zeigen, dass in humanen Fresszellen Salz in gleicher Weise die Funktion beeinflusst.

Wäre es zu einer langanhaltenden Störung gekommen, müsste man sich Sorgen machen, dass die Zellen längerfristig nur eingeschränkt mit Energie versorgt werden.
Professor Dominik N. Müller
Dominik Müller Leiter der AG "Hypertonie-vermittelter Endorganschaden"

Am ECRC, einer gemeinsamen Einrichtung des MDC und der Charité – Universitätsmedizin Berlin, folgte dann eine Studie, bei der gesunde männliche Probanden 14 Tage lang zusätzlich zu ihrer gewohnten Nahrung täglich sechs Gramm Kochsalz in Form von Salztabletten aufnahmen. In einer anderen klinischen Studie untersuchten die Forschenden auch eine typische Alltagssituation: den Verzehr einer Pizza vom Lieblingsitaliener. Anschließend analysierten sie den Zustand der Monozyten im Blut der Probanden. Das Ergebnis: Der dämpfende Effekt auf die Mitochondrien zeigte sich nicht nur bei der längerfristig erhöhten Salzzufuhr, sondern schon nach einmaligem Pizzagenuss. Wie lange er anhält, zeigten die Daten des Pizza-Experiments. Den Probanden wurde nach drei und acht Stunden Blut abgenommen: In der zweiten Probe war der Effekt kaum noch messbar.

„Das ist auch gut so. Denn wäre es zu einer langanhaltenden Störung gekommen, müsste man sich Sorgen machen, dass die Zellen längerfristig nur eingeschränkt mit Energie versorgt werden“, sagt Dominik Müller. Die Mitochondrien-Aktivität ist demnach nicht dauerhaft gehemmt. Dass es zu Akkumulationseffekten kommt, wenn Menschen mehrmals am Tag stark salzige Mahlzeiten zu sich nehmen, ist jedoch nicht auszuschließen. Dies muss jetzt näher untersucht werden. Die Pizza enthielt übrigens insgesamt zehn Gramm Salz. Ernährungsgesellschaften empfehlen Erwachsenen pro Tag nicht mehr als fünf bis sechs Gramm. Das versteckte Salz in verarbeiteten Lebensmitteln ist dabei bereits eingerechnet.

Kleines Ion, große Wirkung

„Die grundlegende Erkenntnis unserer Studie ist, dass so ein kleines Molekül wie das Natriumion ein ganz zentrales Enzym der Atmungskette extrem effizient hemmen kann“, betont Stefan Kempa. „Wenn diese Ionen in die Mitochondrien einströmen – und das tun sie unter verschiedenen physiologischen Bedingungen – regulieren sie den zentralen Punkt in der Elektronentransportkette.“ Es scheint also ein sehr grundlegender Regulationsmechanismus der Zelle zu sein.

Die grundlegende Erkenntnis unserer Studie ist, dass so ein kleines Molekül wie das Natriumion ein ganz zentrales Enzym der Atmungskette extrem effizient hemmen kann.
Dr. Stefan Kempa
Stefan Kempa Leiter der Proteomics und Metabolomics Plattform

Nun müsse untersucht werden, ob dieser Mechanismus auch bei anderen Zelltypen durch Salz beeinflussbar ist. Und das sei äußerst wahrscheinlich, meint Markus Kleinewietfeld. Denn Mitochondrien finden sich nicht nur in Immunzellen, sondern – mit Ausnahme der roten Blutkörperchen – in jeder Körperzelle. Besonders viele sitzen dort, wo viel Energie verbraucht wird: in Muskel-, Nerven-, Sinnes- und Eizellen.

Noch ist unklar, wie bei bestimmten Zelltypen der Natriumeinstrom in die Mitochondrien reguliert wird. Die Studie untermauert jedoch, dass zu hoher Salzkonsum die Gesundheit beeinträchtigen kann. „Man denkt natürlich zuerst an das kardio-vaskuläre Risiko. Doch mehrere Studien haben gezeigt, dass Salz Immunzellen auf verschiedenste Weise beeinflussen kann. Ist ein so fundamentaler Zellmechanismus langfristig gestört, könnte sich das nachteilig auswirken. Entzündliche Erkrankungen an Gefäßen, an Gelenken oder Autoimmunerkrankungen könnten dadurch möglicherweise begünstigt werden“, sagt Markus Kleinewietfeld.

Text: Catarina Pietschmann

 

Weiterführende Informationen

 

Literatur

Sabrina Geisberger et al. (2021): „Salt transiently inhibits mitochondrial energetics in mononuclear phagocytes“. Circulation, DOI: 10.1161/CIRCULATIONAHA.120.052788

 

Download

Erhöhte Natriumkonzentrationen im Blut führen dazu, dass die Mitochondrien – die Kraftwerke der Zellen – vorübergehend weniger ATP produzieren. © Felix Petermann, MDC

Kontakte

Prof. Dr. Dominik Müller
AG Hypertonie-vermittelter Endorganschaden
Experimental and Clinical Research Center (ECRC)
dominik.mueller@mdc-berlin.de

Dr. Stefan Kempa
Proteomics und Metabolomics Plattform
Berlin Institute for Medical System Biology (BIMSB)
+49 30 9406-3033
Stefan.kempa@mdc-berlin.de

Jana Ehrhardt-Joswig
Redakteurin, Abteilung Kommunikation
Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC)
+49 30 9406-2118
jana.ehrhardt@mdc-berlin.de oder presse@mdc-berlin.de

 

Das Max-Delbrück-Centrum für Molekulare Medizin

 

Das Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) wurde 1992 in Berlin gegründet. Benannt ist es nach dem deutsch-amerikanischen Biophysiker Max Delbrück, der 1969 den Nobelpreis für Physiologie oder Medizin erhielt. Aufgabe des MDC ist die Erforschung molekularer Mechanismen, um Krankheitsursachen auf den Grund zu gehen und damit eine bessere und wirksamere Krankheitsdiagnose, -prävention und -behandlung zu ermöglichen. An dieser Zielsetzung arbeitet das MDC gemeinsam mit der Charité – Universitätsmedizin Berlin und dem Berlin Institute of Health (BIH). Darüber hinaus besteht eine Kooperation mit weiteren nationalen Partnern wie dem Deutschen Zentrum für Herz-Kreislauf-Forschung und mit zahlreichen internationalen Forschungseinrichtungen. Am MDC sind über 1.600 Mitarbeiter*innen und Gäste aus fast 60 Ländern tätig, davon knapp 1.300 in der wissenschaftlichen Forschung. Finanziert wird das MDC zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Berlin. Es ist Mitglied der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

www.mdc-berlin.de

 

Über das Experimental and Clinical Research Center (ECRC)

 

Das Experimental and Clinical Research Center (ECRC) wurde 2007 im Rahmen einer institutionellen Kooperation zwischen dem Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) und der Charité – Universitätsmedizin Berlin als gemeinsames Zentrum für die translationale Forschung gegründet. Es soll die interdisziplinäre Zusammenarbeit zwischen Grundlagen- und klinischen Forschern und Forscherinnen verstärken und die Umsetzung von Erkenntnissen aus dem Labor in die klinische Praxis beschleunigen. Das ECRC ist in den Wissenschaftscampus in Berlin-Buch integriert und bietet einzigartige Bedingungen für patientenorientierte Forschung und klinische Studien in einem forschungsgetriebenen Umfeld.

 

Charité – Universitätsmedizin Berlin

 

Die Charité – Universitätsmedizin Berlin ist mit rund 100 Kliniken und Instituten an 4 Campi sowie 3.001 Betten eine der größten Universitätskliniken Europas. Forschung, Lehre und Krankenversorgung sind hier eng miteinander vernetzt. Mit Charité-weit durchschnittlich rund 15.500 und konzernweit 18.700 Beschäftigten aus über 100 Nationen gehört die Berliner Universitätsmedizin zu den größten Arbeitgeberinnen der Hauptstadt. Dabei waren 4.553 der Beschäftigten im Pflegebereich und 4.454 im wissenschaftlichen und ärztlichen Bereich tätig. An der Charité wurden im vergangenen Jahr 154.261 voll- und teilstationäre Fälle sowie 700.819 ambulante Fälle behandelt. Im Jahr 2019 hat die Charité Gesamteinnahmen von rund 2,0 Milliarden Euro, inklusive Drittmitteleinnahmen und Investitionszuschüssen erzielt. Mit den 179,1 Millionen Euro eingeworbenen Drittmitteln erreichte die Charité einen erneuten Rekord. An der medizinischen Fakultät, die zu den größten in Deutschland gehört, werden mehr als 8.000 Studierende in Humanmedizin, Zahnmedizin sowie Gesundheitswissenschaften ausgebildet. Darüber hinaus gibt es 644 Ausbildungsplätze in 9 Gesundheitsberufen.

https://www.charite.de/