AI generated graphic

Ein möglicher Wirkstoff gegen zu steife Herzen

Forschende um Michael Gotthardt vom Max Delbrück Center entwickeln ein Medikament gegen eine häufige Form der Herzschwäche, bei der sich das Herz nicht ausreichend mit Blut füllt. In „Cardiovascular Research“ zeigen sie, dass der Wirkstoff in einem Mausmodell den Herzmuskel wieder elastischer macht.

Je älter wir werden, desto steifer werden oft unsere Muskeln. Das gilt auch für einen besonders wichtigen Muskel unseres Körpers: das Herz. Gerade ältere Menschen leiden daher häufig an einer bestimmten Form der Herzschwäche, bei der das Herz zwar unvermindert Blut durch den Körper pumpt, sich aber aufgrund seiner Steifigkeit nicht mehr richtig ausdehnen und vollständig füllen kann.

„Gegen diese Form der Herzschwäche – die Herzinsuffizienz mit erhaltener Ejektionsfraktion, kurz HFpEF genannt – gibt es bisher kein gutes Medikament, das die Sterblichkeit der Betroffenen verringert“, sagt Professor Michael Gotthardt, Leiter der Arbeitsgruppe „Translationale Kardiologie und Funktionelle Genomforschung“ am Max Delbrück Center. Seit mehr als einem Jahrzehnt konzentriert sich der Forscher darauf, die molekularen Mechanismen der HFpEF (die Abkürzung steht für die englische Bezeichnung „Heart Failure with preserved Ejection Fraction“) zu verstehen und Strategien zu entwickeln, um ihnen entgegenzuwirken.

In der Fachzeitschrift „Cardiovascular Research“ hat Gotthardt jetzt gemeinsam mit einem Team um Professor Henk Granzier vom College of Medicine Tucson der University of Arizona – mit dem er seit vielen Jahren eng zusammenarbeitet – gezeigt, dass das von ihm entwickelte Medikament RBM20-ASO die Elastizität des Herzmuskels und die Füllung des Herzens in einem Mausmodell verbessert, das das multifaktorielle Krankheitsgeschehen der menschlichen HFpEF realitätsnäher abbildet als bisherige Modelle. „Nach der Behandlung mit dem RBM20-ASO waren die Herzen der Mäuse deutlich elastischer und konnten sich nach der Kontraktion besser ausdehnen und mit Blut füllen“, erläutert Gotthardt.

Elastische Versionen des Proteins Titin

„Die meisten Menschen, die unter HFpEF leiden, haben Begleiterkrankungen wie Übergewicht, Bluthochdruck sowie erhöhte Blutfett- und Blutzuckerwerte“, sagt die Erstautorin der Studie, Dr. Mei Methawasin, die inzwischen ihre eigene Arbeitsgruppe an der University of Missouri in Columbia leitet. „Wir haben den Wirkstoff daher erstmals an HFpEF-Mäusen getestet, die auch die Begleiterkrankungen zeigen – um so der menschlichen Krankheit noch näher zu kommen.“

Die Wände der Herzkammern funktionieren ähnlich wie Federn. Wenn sie versteifen, kann sich das Herz nicht mehr richtig entspannen und mit Blut füllen. Mit einer innovativen Behandlungsmethode wollen Forschende dieses Problem jetzt angehen.

Bei dem Medikament handelt es sich um ein Antisense-Oligonukleotid (ASO), ein kurzkettiges, einzelsträngiges Nukleinsäure-Molekül, das die Menge und damit die Aktivität des Spleißfaktors RBM20 reduziert. RBM20 wiederum bestimmt maßgeblich darüber, ob die Zellen des Herzens eher elastische oder eher steife Versionen des Riesenmoleküls Titin herstellen, das im Herzmuskel wie eine molekulare Feder wirkt. Gotthardt und seine Kolleginnen und Kollegen hatten in früheren Experimenten bereits gezeigt, dass das RBM20-ASO die Herzmuskelzellen dazu veranlasst, wie in frühester Jugend vermehrt elastischeres Titin zu produzieren – wodurch die HFpEF-Symptome im Tiermodell vollständig vermieden werden konnten.

Hohe Dosen sind nicht erforderlich

„In der aktuellen Studie ging es zudem darum, die optimale Dosis des Medikaments zu ermitteln, um die Nebenwirkungen der Therapie – unter anderem Störungen des Immunsystems – so gering wie möglich zu halten“, sagt Methawasin. Gemeinsam mit dem Team fand die Forscherin heraus, dass es ausreicht, die Menge des RBM20 in den Herzmuskelzellen etwa zu halbieren, um die diastolische Funktion und damit die Füllung des Herzens zu verbessern und gleichzeitig seine systolische Leistung, also die Kontraktionskraft, zu erhalten. 

„Unsere Behandlung reduzierte trotz anhaltender Begleiterkrankungen die Steifigkeit der linken Herzkammer deutlich und milderte zudem die Herzhypertrophie“, ergänzt Gotthardt. Diese krankhafte Vergößerung des Herzmuskels ist auch beim Menschen häufig mit Herzinsuffizienz assoziiert. Die Nebenwirkungen der Therapie blieben bei den Tieren moderat. Die Forschenden vermuten, dass sich die unerwünschten Effekte noch weiter reduzieren lassen, wenn sie die Abstände zwischen den Wirkstoffgaben vergrößern. Das werden sie jetzt in weiteren Studien untersuchen.

„Zusammengefasst zeigen unsere Ergebnisse, dass die gezielte Beeinflussung der Titin-Produktion mit einem RBM20-ASO eine alternative oder ergänzende Behandlungsstrategie bei HFpEF sein kann, um die diastolische Herzfunktion wiederherzustellen und weitere Organschäden zu begrenzen“, sagt Gotthardt. Mit Unterstützung des Deutschen Zentrums für Herz-Kreislauf-Forschung (DZHK) und der Deutschen Forschungsgemeinschaft (DFG) bereitet er derzeit gemeinsam mit einem Team des Deutschen Herzzentrums der Charité (DHZC) erste Studien mit menschlichen HFpEF-Patientinnen und -Patienten vor. Im Vorfeld wollen die Forschenden die Effektivität und die Sicherheit des Verfahrens zunächst in einem Schweinemodell überprüfen.

Text: Anke Brodmerkel

 

Weitere Informationen

 

Literatur

Methawasin M, et al. (2025): „Rbm20 antisense oligonucleotides alleviate diastolic dysfunction in a mouse model of cardiometabolic heart failure (HFpEF)“. Cardiovascular Research, DOI: 10.1093/cvr/cvaf171

 

Kontakte

Prof. Dr. Michael Gotthardt
Gruppenleiter „Translationale Kardiologie und Funktionelle Genomforschung“
Max Delbrück Center 
+49 30 9406-2387
gotthardt@mdc-berlin.de

Jana Schlütter
Stellvertretende Leiterin Kommunikation
Max Delbrück Center
+49 30 9406-2121
jana.schluetter@mdc-berlin.de oder presse@mdc-berlin.de

Max Delbrück Center

Das Max Delbrück Center für Molekulare Medizin in der Helmholtz-Gemeinschaft legt mit seinen Entdeckungen den Grundstein für die Medizin von morgen. An unseren Standorten in Berlin-Buch, Berlin-Mitte, Heidelberg und Mannheim erforschen interdisziplinäre Teams die Komplexität von Krankheiten auf Systemebene – von Molekülen und Zellen bis hin zu Organen und dem gesamten Organismus. Gemeinsam mit Partnern aus Wissenschaft, Klinik und Industrie sowie in internationalen Netzwerken entwickeln wir innovative Ansätze für die Früherkennung, personalisierte Therapien und Prävention von Krankheiten. Das 1992 gegründete Max Delbrück Center bietet rund 1.800 Mitarbeitenden aus mehr als 70 Ländern ein vielfältiges, dynamisches und inspirierendes Arbeitsumfeld. Wir werden zu 90 Prozent durch den Bund und zu 10 Prozent durch das Land Berlin finanziert.